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Abstract

In this paper the two-dimensional conjugate free convection in a porous medium is investigated from a vertical plate

fin. Both physically and mathematically it is important to consider a smooth profile for the tip of the fin, such as a

rounded tip of an arbitrary shape. Such fin shapes approximate well the rectangular fin, and their study allows a more

accurate prediction of the heat transfer quantities, since no restrictive conditions have to be imposed, such as an

insulated tip, and there are no singularities appearing in the mathematical formulation.

The governing equations of the convective flow in the porous medium are coupled to the governing equation for the

heat flow in the fin by the conditions of continuity of the temperature and the heat flux at the solid/porous media

interface. The governing non-dimensional parameters are the convection–conduction parameter, Ncc, and the aspect

ratio of the fin, k.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Research in convective heat transfer from fins

embedded in viscous fluids or porous media has been

intensified in recent years. This is a result of the recog-

nition of the necessity of accurate solution methodolo-

gies in various technological applications, such as heat

transfer analysis of extended surfaces, geothermal sys-

tems, etc. It has been found that the heat transfer

coefficient is not invariant along the surface of fins, see

[1,2], but it has to be obtained as part of the solution

procedure of the coupled conduction–convection, con-

jugate heat transfer problem. Different types of conju-

gate problems are well documented in the books by
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Nield and Bejan [3] and Pop and Ingham [4], and the

book by Sunden and Heggs [5] presents an overview of

the problems related to heat transfer for fin type sur-

faces.

The conjugate free convection from a vertical fin

embedded in a porous medium has been analysed by

integral, finite-difference and local non-similarity meth-

ods, and Pop and Nakayama [6] provide an excellent

review on this problem. Liu and Minkowycz [7] and Liu

et al. [8] studied the natural convection from a plate and

cylindrical shaped fin, respectively, and they assumed

that the heat conduction in the fin is one-dimensional

along the axis of the fin. Vaszi et al. [9] extended the

analysis on both of these papers by considering two-

dimensional heat conduction in the fin and solving the

conjugate problem by a finite-difference approach. In

their work they assumed the tip of the fin to be insulated,

and they also investigated the validity of this boundary

condition.

In this paper we investigate the conjugate free con-

vection in a porous medium from a vertical rectangular
ed.

mail to: attila@rdr.leeds.ac.uk


Nomenclature

a; b thickness and length of the fin, respectively

F ;G; g similarity variables

g magnitude of the acceleration due to gravity

h local heat transfer coefficient

kf ; ks thermal conductivity of the porous medium

and the solid fin, respectively
�k ks=kf
K permeability of the isotropic porous medium

Ncc conduction–convection parameter

q local heat flux

Q total heat transfer rate from the fin

Ra Rayleigh number, gKbq1ðTc�T1Þb
al

T temperature

Tc constant temperature at the base of the fin

Tf , Ts temperature of the porous medium and the

solid fin, respectively

U ; V velocity components along the X and Y
axes, respectively

X ; x dimensional and non-dimensional distance

along the surface of the fin, respectively

Y ; y dimensional and non-dimensional distance

normally outwards from the fin, respectively

�y non-dimensional distance normal to the

surface of the fin, measured in the fin

Greek symbols

a effective thermal diffusivity of the porous

medium

�a angle between the Y -axis and the downward

vertical

b coefficient of the thermal expansion

hf ; hs non-dimensional temperature of the porous

medium and the solid fin, respectively

k aspect ratio of the rectangular part of the fin

l dynamic viscosity of the fluid

q density of the fluid

W;w dimensional and non-dimensional stream-

function, respectively

Subscripts

circ, rect reference to the circular and rectangular

parts of the fin, respectively

d dimensional quantities

1 reference value at a large distance from the

fin
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plate fin heated at its base, whose tip ends in a smooth

profile, as would occur in practice. In order to illustrate

the computational procedure, we have taken the end of

the fin to be half of a cylinder of diameter the width of

the rectangular section of the fin, thus extending the

problem of free convection from a vertical plate fin

studied by Vaszi et al. [9]. The two-dimensional heat

conduction in the fin is coupled to the convection

boundary-layer in the porous medium by the conditions

of the continuity of the temperature and the heat flux at

the porous medium–solid interface. The boundary-layer

starts at the lowest point on the fin, and it gradually

grows in thickness along the cylindrical tip and then

along the main body of the fin as the base of the fin is

approached. Similarity transformations are possible to

employ for the boundary-layer along the fin from the tip

to the base, and no singularity appears in the mathe-

matical formulation. These similarity transformations

were introduced by Merkin [10] for the free convection

boundary-layer around an isothermal cylinder sur-

rounded by a porous medium. In the case of fins with a

flat tip, Vaszi et al. [9] employed the artificial, but fre-

quently assumed, boundary condition of an insulating

fin tip, which may be restrictive, and it introduces

mathematical inaccuracies when dealing with the heat

and fluid flow in the vicinity of the tip in practical sit-

uations. These authors also studied analytically the

mathematical singularity that appears at the fin surface
near the fin tip which, of course, does not occur in

practice and the present work avoids it.

Several theoretical investigations have been carried

out on heat exchangers and heat transfer from extended

surfaces, see for example [11,12]. Vertical fins with var-

ious shapes were considered in these studies, such as

rectangular, triangular, convex parabolic and concave

parabolic fins, attached to a planar wall. The fin shape

considered here is another, practical and convenient,

alternative which ultimately approximates well the

rectangular fin shape when the fins are relatively long or

thin. Further, it also has the advantages of mathematical

convenience and possibility of a more accurate predic-

tion of such quantities as the heat transfer coefficient

and the heat flux along the fin and the total heat transfer

from the fin.
2. Physical model and governing equations

The physical configuration of the problem under

investigation is shown schematically in Fig. 1. We con-

sider a vertical plate fin surrounded by a porous med-

ium, which is attached to a solid base and it extends in

the direction normal to the plane of the base of the fin.

The vertical fin is composed of a rectangular part of

thickness a and length b, to the lower part of which a

half cylindrically shaped solid part of diameter a is at-



Fig. 1. Physical model, notation and coordinate system employed.
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tached. This half cylindrically shaped part of the fin

makes it possible to avoid the necessity of prescribing a

boundary condition at the tip of the fin. In the work by

Vaszi et al. [9] it was assumed that the heat loss from the

end face of the fin is negligible, but this is an assumption

that is only valid if the fin is very long.

For convenience, the coordinate system is chosen

such that X measures the distance along the surface of

the fin from the lowest point and being measured posi-

tive along the right hand side of the fin. The coordinate

Y is the distance normally outwards from the fin. Fur-

ther, �aðX Þ is the angle between the Y -axis and the

downward vertical. As the problem is symmetrical with

the axis of symmetry along the vertical centre line

through the fin, we will consider in the analysis only

the right hand side of the axis of symmetry.

The boundary-layer approximation is considered.

Thus we assume that a boundary-layer develops around

the fin, which has a finite thickness below the lowest

point, i.e. the tip of the fin at ðX ; Y Þ ¼ ð0; 0Þ, and then

grows in thickness with increasing values of X . The flow

is assumed to be governed by the boundary-layer

equations appropriate to Darcy flow. Using X ¼ �a a
2
,

then the Darcy equation can be expressed as follows,

see [10]:
U ¼ Kq1bg
l

ðTf � T1ÞSðX Þ; ð1Þ

where U is the velocity component along the X -axis, Tf is
the temperature of the porous medium, K is the per-

meability of the isotropic porous medium, q is the

density of the fluid, b is the coefficient of thermal

expansion, g is magnitude of the acceleration due to

gravity, l is the dynamic viscosity of the fluid and the

subscript 1 denotes the reference value at a large dis-

tance from the fin. The function SðxÞ is defined as fol-

lows:

SðX Þ ¼ sin 2X
a if 06X 6

ap
4
;

1 if ap
4
< X 6

ap
4
þ b;

�
ð2Þ

and for other shaped fin tips then the function SðX Þ will,
of course, be different. The continuity equation and the

energy equation may be expressed as follows:

oU
oX

þ oV
oY

¼ 0 ð3Þ

and

U
oTf
oX

þ V
oTf
oY

¼ a
o2Tf
oY 2

; ð4Þ
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respectively. Here V is the velocity component along the

Y -axis, and a denotes the effective thermal diffusivity of

the porous medium. The boundary conditions for the

boundary-layer flow are the following:

V ¼ 0; Tf ¼ Ts on Y ¼ 0; ð5aÞ

U ! 0; Tf ! T1 as Y ! 1; ð5bÞ

where Ts is the temperature in the solid fin.

By defining the streamfunction W as U ¼ oW
oY , V ¼

� oW
oX , the continuity equation (3) is satisfied identically,

and the boundary-layer equations (1) and (4) transform

to:

oW
oY

¼ Kq1bg
l

ðTf � T1ÞSðX Þ; ð6Þ

oW
oY

oTf
oX

� oW
oX

oTf
oY

¼ a
o2Tf
oY 2

; ð7Þ

respectively, whilst the boundary conditions (5) now

become:

W ¼ 0; Tf ¼ Ts on Y ¼ 0; ð8aÞ

oW
oY

! 0; Tf ! T1 as Y ! 1: ð8bÞ

We now introduce the non-dimensional variables:

x ¼ X
b
; y ¼ Ra1=2

Y
b
; w ¼ Ra�1=2 W

a
;

hf ¼
Tf � T1
Tc � T1

; hs ¼
Ts � T1
Tc � T1

;
ð9Þ

where Ra is defined as Ra ¼ gKbq1ðTc�T1Þb
al , and Tc is the

constant heating temperature at the base of the fin. Thus

Eqs. (6) and (7) are now expressed as follows:

ow
oy

¼ hfSðxÞ; ð10Þ

ow
oy

ohf
ox

� ow
ox

ohf
oy

¼ o2hf
oy2

; ð11Þ

whilst the boundary conditions (8) become

w ¼ 0; hf ¼ hs on y ¼ 0; ð12aÞ

ow
oy

! 0; hf ! 0 as y ! 1: ð12bÞ

The function SðxÞ for the present geometry is defined

as follows:

SðxÞ ¼ sin 2x
k if 06 x6 kp

4
;

1 if kp
4
< x6 kp

4
þ 1;

�
ð13Þ

with k ¼ a
b being the aspect ratio of the rectangular part

of the fin.

For the purpose of the analytical development and

the ultimate numerical solution, we now introduce the

following similarity variables:
wðx; yÞ ¼ 2

Z x

0

SðtÞdt
� �1=2

F ðx; gÞ;

hfðx; yÞ ¼ Gðx; gÞ; g ¼ ySðxÞ
2
R x
0
SðtÞdt

� �1=2 :
ð14Þ

These variables were first introduced by Merkin [10] for

the free convection boundary-layer problem of a con-

stant wall temperature from two-dimensional bodies of

arbitrary shape embedded in a porous medium. On

introducing expressions (13) into the expressions (14),

we obtain the following:

wðx; yÞ ¼
ffiffiffiffiffi
2k

p
sin x

k F ðx; gÞ if 06 x6 kp
4
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k 1� p
2

� �
þ 2x

q
F ðx; gÞ if kp

4
< x6 kp

4
þ 1;

(

hfðx; yÞ ¼ Gðx; gÞ; ð15Þ

g ¼

ffiffi
2
k

q
y cos x

k if 06 x6 kp
4
;

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1� p

2

� �
þ 2x

q.
if kp

4
< x6 kp

4
þ 1;

8<
:

and thus in terms of the variables F , G and g, Eqs. (10)
and (11) transform to

F 0 � G ¼ 0; ð16Þ
and

G00 þ FG0 ¼ k tan
x
k

� �
F 0 oG

ox

�
� G0 oF

ox

�

if 06 x6
kp
4
; ð17Þ

G00 þ FG0 ¼ k 1
��

� p
2

�
þ 2x

�
F 0 oG

ox

�
� G0 oF

ox

�

if
kp
4

< x6
kp
4
þ 1; ð18Þ

respectively, whilst the boundary conditions (12) now

become

F ¼ 0; G ¼ hs on g ¼ 0; ð19aÞ

F 0 ! 0; G ! 0 as g ! 1; ð19bÞ

where primes denote differentiation with respect to g.
In order to model the heat conduction in the fin, the

two-dimensional steady state heat conduction equation,

r2Ts ¼ 0 is employed.

We consider separately the half cylindrical and the

rectangular parts of the solid fin, and thus in the cylin-

drical part in terms of the plane polar coordinates

ðR;UÞ, where R ¼ Y þ a
2
and U ¼ 2

a X � p
2
, the following

equation is obtained:

Y
�

þ a
2

�2 o2Ts
oY 2

þ Y
�

þ a
2

� oTs
oY

þ a2

4

o2Ts
oX 2

¼ 0: ð20Þ

The polar coordinate system ðR;UÞ has its origin at

Y ¼ � a
2
, and thus the cylindrical part of the fin is in the

region 06R6
a
2
, � p

2
6U6 0, that is � a

2
6 Y 6 0,
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06X 6
ap
4
. The heat flux continuity condition is applied

at the porous medium–solid interface at Y ¼ 0 and

at the transition line between the circular and the

rectangular part, i.e. at X ¼ ap
4
, whilst the condition of

the continuity of the temperature at X ¼ ap
4
, and a

symmetry condition at the vertical symmetry axis are

also applied. Therefore the boundary conditions are the

following:

ks
oTs
oY

¼ kf
oTf
oY

on Y ¼ 0; 06X 6
ap
4
; ð21aÞ

ðTsÞcirc ¼ ðTsÞrect on Y ¼ � a
2
; 06X 6

ap
4
; ð21bÞ

oTs
oX

¼ 0 on X ¼ 0; � a
2
6 Y 6 0; ð21cÞ

ðTsÞcirc ¼ ðTsÞrect
oTs
oX

� �
rect

¼ 1

Yþa
2ð Þ

a
2

oTs
oX

� �
circ

)
on X ¼ ap

4
; � a

2
6 Y 6 0;

ð21dÞ

where ks and kf are the thermal conductivities of the

solid fin and the porous medium, respectively, and

the notations ð Þcirc and ð Þrect refer to the circular and

the rectangular parts of the fin, respectively.

In order to express Eq. (20) for the temperature in the

fin in non-dimensional form, the variables (9) are em-

ployed, but now the distance Y is normalized as follows:

�y ¼ Y
b
: ð22Þ

Thus Eq. (20) is expressed as follows:

�y
�

þ k
2

�2
o2hs
o�y2

þ �y
�

þ k
2

�
ohs
o�y

þ k2

4

o2hs
ox2

¼ 0: ð23Þ

On applying the transformations (15) for the porous

medium region, the boundary conditions (21) transform

as follows:

ohs
o�y

¼ Ra1=2

�k

ffiffiffi
2

k

r
cos

x
k

� �
G0 on �y ¼ 0; 06 x6

kp
4
;

ð24aÞ

ðhsÞcirc ¼ ðhsÞrect on �y ¼ � k
2
; 06 x6

kp
4
; ð24bÞ

ohs
ox

¼ 0 on x ¼ 0; � k
2
6 �y6 0; ð24cÞ

ðhsÞcirc ¼ ðhsÞrect
ohs
ox

� �
rect

¼ 1

�yþk
2ð Þ

k
2

ohs
ox

� �
circ

9=
; on x ¼ kp

4
; � k

2
6�y6 0;

ð24dÞ

where �k ¼ ks=kf .
In the rectangular part of the fin, the two-dimen-

sional steady state heat conduction equation is given as

follows:
o2Ts
oX 2

þ o2Ts
oY 2

¼ 0; ð25Þ

which has to be solved subject to the following boundary

conditions:

ks
oTs
oY

¼ kf
oTf
oY

on Y ¼ 0;
ap
4

6X 6
ap
4
þ b; ð26aÞ

oTs
oY

¼ 0 on Y ¼ � a
2
;
ap
4

6X 6
ap
4
þ b; ð26bÞ

ðTsÞcirc ¼ ðTsÞrect
oTs
oX

� �
rect

¼ 1

Yþa
2ð Þ

a
2

oTs
oX

� �
circ

9=
; on X ¼ ap

4
; � a

2
6 Y 6 0;

ð26cÞ

Ts ¼ Tc on X ¼ ap
4
þ b; � a

2
6 Y 6 0: ð26dÞ

Using the transformations (9), (15) and (22), Eq. (25)

becomes

o2hs
ox2

þ o2hs
o�y2

¼ 0; ð27Þ

and the boundary conditions (26) become the following:

ohs
o�y

¼ Ra1=2

�k
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k 1� p
2

� �
þ 2x

q G0

on �y ¼ 0;
kp
4

6 x6
kp
4
þ 1; ð28aÞ

ohs
o�y

¼ 0 on �y ¼ � k
2
;
kp
4

6 x6
kp
4
þ 1; ð28bÞ

ðhsÞcirc ¼ ðhsÞrect
ohs
ox

� �
rect

¼ 1

�yþk
2ð Þ

k
2

ohs
ox

� �
circ

9=
; on x ¼ kp

4
; � k

2
6 �y6 0;

ð28cÞ

hs ¼ 1 on x ¼ kp
4
þ 1; � k

2
6 �y6 0: ð28dÞ
2.1. Physical quantities

The local heat transfer coefficient, the local heat flux

and the total heat transfer rate from the fin are defined

as follows:

hdðX Þ ¼ �kf
oTf
oY

				
Y¼0

1

TsðX ; 0Þ � T1
; ð29Þ

qdðX Þ ¼ �kf
oTf
oY

				
Y¼0

ð30Þ

and

Qd ¼ 2

Z ap
4
þb

0

qdðX ÞdX ; ð31Þ
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respectively. In non-dimensional form, these quantities

are normalised as hðxÞ ¼ hdðX Þb
kfRa1=2

, qðxÞ ¼ qdðX Þb
kf ðTc�T1ÞRa1=2 and

Q ¼ Qd

kf ðTc�T1ÞRa1=2, and, via the expressions (9) and (15),

they can be expressed in the following form:

hðxÞ ¼
�G0ðx; 0Þ

ffiffi
2
k

q
cos x

k
1

hsðx;0Þ if 06 x6 kp
4
;

�G0ðx; 0Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1�p

2ð Þþ2x
p 1

hsðx;0Þ if kp
4
< x6 kp

4
þ 1;

8><
>:

ð32Þ

qðxÞ ¼
�G0ðx; 0Þ

ffiffi
2
k

q
cos x

k if 06 x6 kp
4
;

�G0ðx; 0Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1�p

2ð Þþ2x
p if kp

4
< x6 kp

4
þ 1;

8><
>:

ð33Þ

and

Q ¼ 2

Z kp
4

0

"
� G0ðx; 0Þ

ffiffiffi
2

k

r
cos

x
k

#
dx

þ 2

Z kp
4
þ1

kp
4

�G0ðx; 0Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1� p

2

� �
þ 2x

q ; ð34Þ

respectively.

For the purpose of comparison of the results with

those presented by Vaszi et al. [9], we introduce the

conduction–convection parameter Ncc, which is defined

as Ncc ¼ 2Ra1=2
�kk .
f

y

0.0

0.2

0.4

0.6

0.8

1.0

0 2 41 3 5 6 7

Fig. 2. The non-dimensional fluid temperature profiles, hf , as a
function of y, when an isothermal cylinder is considered. The

lines marked by þ and M show the results for �a ¼ 0� and

�a ¼ 60�, respectively.
3. Method of solution

The equations for the porous medium and the fin

regions are both approximated by finite differences and

an iterative solution procedure is implemented in which

the equations are solved to convergence. This numerical

procedure follows closely the method described by Vaszi

et al. [13], which was also employed by Vaszi et al. [9].

Vaszi et al. [13] provided a detailed description of the

method, and therefore details are not repeated here.

In the fin region, the equations for the circular and

the rectangular parts have to be solved separately, sub-

ject to the appropriate boundary conditions. At the

transition line between the cylindrical and the rectan-

gular regions of the fin, i.e. at x ¼ kp
4
, both the conditions

of the continuity of the temperature and the heat flux are

satisfied, see the boundary condition (24d). In the

cylindrical region, the first condition from (24d) is ap-

plied, namely the continuity of the temperature, whilst in

the rectangular region the second condition, i.e. the

continuity of the heat flux is used.

When solving Eqs. (23) (24), (27) and (28) in the fin

region, first a number of iterations are processed on the

equations for the cylindrical part in order to obtain an

estimate for ðhsÞcirc and then this estimate is used to
process a number of iterations on Eqs. (27) and (28) in

the rectangular part of the fin. Then, as an estimate for

hs for the whole fin is obtained in this manner, the outer

iteration continues with the solving of Eqs. (16)–(19) for

the porous medium region by using this estimate.
4. Results and discussion

In this section results are presented and discussed in

terms of the plate aspect ratio, k, and the conduction–

convection parameter, Ncc. Also, we discuss briefly the

dependence of the solutions on the numerical parame-

ters. Thus we have found that accurate numerical solu-

tions can be obtained by setting the value of g1 ¼ 8 for

the location of the infinity boundary in the porous

medium region, 80 grid points in the g direction and the

same grid points in the x direction for the fin and the

porous medium regions. The iterative procedure has

been continued until the maximum error for two suc-

cessive iterations between the fields w, hf and hs became

smaller than e ¼ 10�6. If we took e ¼ 10�7 then the re-

sults become indistinguishable from those presented in

the paper.

Numerical results have been obtained for the values

of the fin aspect ratio k ¼ 0:025, 0.05, 0.1, 0.2 and 0.5.

For kP 0:1, in the rectangular part of the fin region the

number of grid points in the x direction has been set to

be 81. Then the number of the grid points in the x
direction in the circular part of the fin has been set such

that the step sizes along �y ¼ 0 from x ¼ 0 to kp
4
þ 1, and

the step sizes in the �y direction have about the same

magnitude. However, for k ¼ 0:025 and 0.05, it is nec-
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essary to set larger grids, thus for k ¼ 0:025 the grids

(4 ·3)circ and (121 · 3)rect, whilst for k ¼ 0:05 the grids

(6 · 4)circ and (121· 4)rect have been set in the fin.

Fig. 2 shows the results for the non-dimensional

temperature hf at �a ¼ 0� and �a ¼ 60� as a function of the

radial distance y, when both the rectangular and the

circular parts of the fin are considered to be isothermal

at the non-dimensional temperature hs ¼ 1. The results

presented in this figure agree very well with the results of

Ingham et al. [14], who investigated the free convection

boundary layers on an isothermal horizontal cylinder.

Fig. 3 shows results for the non-dimensional tem-

perature on the conjugate boundary hfðx; 0Þ, obtained
for various values of the fin aspect ratio, k, plotted by

the continuous lines. These results are compared to

those presented in Fig. 3 of the paper by Vaszi et al. [9]

for a rectangular plate fin, which are shown by the da-

shed lines. Both for Ncc ¼ 0:5 and 2, the temperature

profiles for the fin with the rounded tip increase with
f (x, 0)

x

0.7

0.75

0.8

-0.4 -0.2 0.0

f (x,0)

x
-0.4 -0.2 0.0

0.4

0.45

0.5

0.55

λ = 0.025

λ = 0.05

λ = 0.025

λ = 0.05

λ = 0.1

λ = 0.1

λ = 0.2

λ = 0.2
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decreasing values of the fin aspect ratio, and they appear

to tend to a limit when k ! 0. This limit is near to the

limit which is approached by the temperature profiles

plotted for the rectangular fin for small values of k.
Fig. 4 presents results for (a) the non-dimen-

sional local heat transfer coefficient, hðxÞ, and (b) the

non-dimensional local heat flux, qðxÞ, calculated for

Ncc ¼ 0:5, 2 and 12. Results obtained for various values

of the fin aspect ratio, k, shown by the continuous lines,

are compared to the results obtained by using the finite

fin formulation for the rectangular fin. The latter results

are only shown for k ¼ 0:2, plotted by the dashed lines,

as the results for kK 0:2 do not differ significantly,

see [9].

It is seen, for the fin with the rounded tip, that both

the non-dimensional local heat transfer coefficient and

heat flux vary greatly as the fin aspect ratio decreases,

and it appears that both quantities ultimately approach

the result obtained by the finite fin formulation with the
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Fig. 4. (a) The non-dimensional local heat transfer coefficient, hðxÞ, and (b) the non-dimensional local heat flux, qðxÞ, calculated for (i)

Ncc ¼ 0:5, (ii) Ncc ¼ 2 and (iii) Ncc ¼ 12. The continuous and the dashed lines show results obtained for the fin with a cylindrical tip, and

for the rectangular fin, respectively.

Table 1

The total heat transfer rate, Q

Q Ncc ¼ 0:5 Ncc ¼ 2 Ncc ¼ 12

Rectangular fin 1.425304 1.102953 0.635799

k ¼ 0:025 1.472561 1.119455 0.641984

k ¼ 0:05 1.486228 1.124212 0.640907

k ¼ 0:1 1.529286 1.138419 0.632221

k ¼ 0:2 1.547875 1.139061 0.616232
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insulated tip, for all values of Ncc investigated. Also, in a

similar manner to the results for the rectangular plate

fin, the trend of rapidly decreasing values for hðxÞ and

qðxÞ near the tip with increasing values of x is observed

for small values of k. However, as the aspect ratio in-

creases, a smoother drop is observed near the tip of the

fin.

In Table 1 we present the total heat transfer rate,

Q, for Ncc ¼ 0:5, 2 and 12, obtained for the values of the

fin aspect ratio k ¼ 0:025, 0.05, 0.1 and 0.2, and the

results for the rectangular plate fin are also presented

for k ¼ 0:2. The results for Q at k ¼ 0:2 and for other

values of k for the rectangular plate fin are listed in

Table 1 in [9].

It is observed that for all investigated values of Ncc

the total heat transfer rate is always smaller for the

rectangular plate fin than for the fin with the circular
tip and this is expected as in the latter case the heat

transfer surface is larger. Also, the total heat trans-

fer rate decreases with increasing values of Ncc, and this

is expected as increasing values of Ncc may be associ-

ated with decreasing values of the thermal conductivity

ratio between the fin and the porous medium when k is

fixed.
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Further, it is observed that for Ncc ¼ 0:5 and 2 the

total heat transfer rate increases as k increases, and this is

a direct consequence of the increasing heat transfer sur-

face at the tip of the fin. However, in a rather surprising

manner, this trend is not apparent for Ncc ¼ 12, as when

increasing k and thus the heat transfer surface results in

slightly lower values of Q. We postulate the reason for

this is that large values of Ncc may again be associated

with small values of the thermal conductivity of the fin,

and in this case the extension of the heat transfer surface

does not appear to be a major factor in influencing the

total heat transfer rate. It should also be noted that the

same trend of decreasing values of Q with increasing

values of k was found in the case of the rectangular plate

fin, for all investigated values of Ncc, see Table 1 in [9].

Therefore an important conclusion is drawn, namely that

increasing the heat transfer surface does not increase the

total heat transfer in all circumstances.
5. Concluding remarks

In this paper the study of the two-dimensional steady

state free convection from a vertical rectangular plate fin

embedded in a porous medium has been extended to a

vertical fin with a cylindrical tip. A boundary-layer

investigation has been performed in the porous medium

region, both around the cylindrical tip and next to the

main body of the fin, whilst in the fin two-dimensional

heat conduction has been considered. The governing

parameters of the problem are identified as the con-

duction–convection parameter, Ncc ¼ 2Ra1=2
�kk , and the as-

pect ratio of the fin, k.
By attaching the cylindrical part to the tip of the fin,

the problem of dealing with the heat transfer at the tip of

the fin in situations when the fin is thin is mathematically

naturally resolved, and it is not necessary to introduce

artificial approximations, such as insulating the tip of

the fin. However, for relatively large values of the aspect

ratio, the problem of considering the alternatives of an

insulated fin tip or a cylindrical fin tip in order to ad-

dress the heat transfer at the tip of the fin in an appro-

priate way is of little importance, as these two

alternatives are addressing different problems.

It is important to note that as the fin aspect ratio, k,
takes small values, and eventually tends to 0, the results

for the non-dimensional temperature, local heat transfer

coefficient, local heat flux and total heat transfer for

the fin with the cylindrical tip approach those for the

rectangular fin. The local heat transfer coefficient and

the local heat flux show a more gradual drop along the

rounded tip as the aspect ratio of the fin becomes larger.

For most values of the conduction–convection para-

meter, Ncc, the total heat transfer from the fin increases

with increasing values of the aspect ratio. However, a

different behaviour is observed when this parameter
becomes large, a situation which is associated with a low

thermal conductivity ratio between the fin and the por-

ous medium.

It should be noted that in all the results presented in

this paper we have assumed that there is a rectangular

part of the fin which is made smooth by adding on to the

end of the fin a cylindrically shaped end. However, the

work presented in this paper can easily be extended to

any smoothly shaped fin.
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